Cryptography from Pseudorandom Quantum States
Abstract: Pseudorandom states, introduced by Ji, Liu and Song (Crypto'18), are efficiently-computable quantum states that are computationally indistinguishable from Haar-random states. One-way functions imply the existence of pseudorandom states, but Kretschmer (TQC'20) recently constructed an oracle relative to which there are no one-way functions but pseudorandom states still exist. Motivated by this, we study the intriguing possibility of basing interesting cryptographic tasks on pseudorandom states.
We construct, assuming the existence of pseudorandom state generators, (a) statistically binding and computationally hiding commitments and (b) pseudo one-time encryption schemes. A consequence of (a) is that pseudorandom states are sufficient to construct maliciously secure multiparty computation protocols in the dishonest majority setting. We believe that our results point to an intriguing new landscape of cryptographic protocols and hardness assumptions in the quantum world.
To watch online go to the IQUIST youtube channel
For Zoom link you may check the IQUIST calendar weekly email or contact Kelly Foster ([email protected]), or Hannah Stites ([email protected]).